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Exercise 1

Consider a family of probability measures F Ď P
`

Rd
˘

. We say that the family is tight if
for any ε ą 0 there exists a compact set K Ă Rd such that µ pKq ą 1´ ε for any µ P F .

The following Theorem holds true (for a proof, see Theorem 5.1 in Convergence of Prob-
ability Measures (Second Edition) by P. Billingsley).

Theorem (Prohorov’s Theorem). Consider a sequence of probability measures tµkukPN Ď
P
`

Rd
˘

which is tight. Then there exists a subsequence1 tµklulPN and a probability measure
µ P P

`

Rd
˘

such that µkl á µ if lÑ `8.

Use Prohorov’s Theorem (without proving it) to prove that
`

P1

`

Rd
˘

,W1

˘

is a complete
metric space.

Hint: Consider a Cauchy sequence for W1, show that it is tight. Using the Theorem deduce
the existence of a weak limit and prove that the convergence holds also with the metric
W1.

Proof. Let tµkukPN Ď P1

`

Rd
˘

be a Cauchy sequence, i.e., for any ε exists N P N such
that

W1 pµk, µlq ă ε k, l P N, k ą N, l ą N. (1)

We first show that tµkukPN Ď P1

`

Rd
˘

is tight. Indeed let N such that

W1 pµk, µlq ă 1 k, l P N, k ą N, l ą N. (2)

As a consequence we get by the definition of Wasserstein distance that if k ą N

ż

Rd

|x| dµk pxq “

ż

Rd

|x| dµk pxq ´

ż

Rd

|x| dµN`1 pxq `

ż

Rd

|x| dµN`1 pxq (3)

ďW1 pµk, µN`1q `

ż

Rd

|x| dµN`1 pxq ď 1`

ż

Rd

|x| dµN`1 pxq , (4)

and therefore we get

sup
kPN

ż

Rd

|x| dµk pxq ď max

"

max
1ďkďN

ż

Rd

|x| dµk pxq , 1`

ż

Rd

|x| dµN`1 pxq

*

(5)

“: C ă `8. (6)

1Recall that tµklulPN is a subsequence of tµkukPN if the sequence tklulPN is a sequence of natural numbers
such that kl`1 ą kl for any l P N.
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We then consider R ą 0 a positive real number and BR the closed ball centered in the
origin of radius R to get

inf
kPN

ż

BR

dµk pxq “ inf
kPN

˜

1´

ż

Bc
R

dµk pxq

¸

“ 1´ sup
kPN

ż

Bc
R

dµk pxq (7)

ě 1´ sup
kPN

ż

BR

|x|

R
dµk pxq ě 1´

C

R
(8)

where in the first inequality we used the fact that outside the ball BR we have |x|
R ě 1.

So, fix now ε ą 0; we then have µk

´

BC
ε

¯

ě 1´ ε for any k P N and given that the closed

ball is compact, the sequence is tight.

Now, Prohorov’s Theorem ensures us that there exists a subsequence tµklulPN and a
probability measure µ P P

`

Rd
˘

such that µkl á µ if l Ñ `8. We first show that this
implies that W1 pµkl , µq Ñ 0 as lÑ `8.

Recall from Exercise 2 of the sheet from the 18.03.2021 (third sheet) the family of functions
fε P Cb

`

Rd
˘

, defined such that

χBR
pxq ď fε pxq ď χBR`ε

pxq . (9)

By definition of weak convergence and from the bound in (5) we get that for any R ą 0

ż

BR

|x| dµ pxq ď

ż

Rd

|x| fε pxq dµ pxq “ lim
lÑ`8

ż

Rd

|x| fε pxq dµkl pxq (10)

ď lim sup
lÑ`8

ż

Rd

|x| dµkl pxq ď C. (11)

Taking the supremum over R ą 0 this implies that µ P P1

`

Rd
˘

.

Consider now the following function:

gR pxq :“

$

&

%

|x| , |x| ď R,
2R´ |x| , R ă |x| ď 2R,
0, |x| ą 2R.

(12)

This is a Lipschitz function with |x|χBR
pxq ď gR pxq ď |x| and }gR}LippRdq ď 1, therefore

we get that for any l P N
ż

BR

|x| dµkl pxq ď

ż

Rd

gR pxq dµkl pxq (13)

“

ż

Rd

gR pxq dµkl pxq ´

ż

Rd

gR pxq dµkn pxq `

ż

Rd

gR pxq dµkn pxq (14)

ď }gR}LippRdqW1 pµkl , µknq `

ż

Rd

gR pxq dµkn pxq (15)

ďW1 pµkl , µknq `

ż

Rd

gR pxq dµkn pxq . (16)
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Fix ε ą 0; given that µnk
á µ as k Ñ `8 there exists N such that for any n ą N we get

ˇ

ˇ

ˇ

ˇ

ż

Rd

gR pxq dµkn pxq ´

ż

Rd

gR pxq dµ pxq

ˇ

ˇ

ˇ

ˇ

ă
ε

2
. (17)

Therefore, using also (5) we get that for any n ą N
ż

Rd

|x| dµkl pxq ď

ż

BR

|x| dµkl pxq `
C

R
(18)

ďW1 pµkl , µknq `

ż

Rd

gR pxq dµkn pxq `
C

R
(19)

ďW1 pµkl , µknq `

ż

Rd

gR pxq dµ pxq `
ε

2
`
C

R
(20)

ďW1 pµkl , µknq `

ż

Rd

|x| dµ pxq `
ε

2
`
C

R
. (21)

Using the fact that the sequence is Cauchy we also get that there is N 1 ě N such that
for any l ą N 1 we get

ż

Rd

|x| dµkl pxq ď

ż

Rd

|x| dµ pxq ` ε`
C

R
. (22)

This implies in particular that

lim sup
lÑ`8

ż

Rd

|x| dµkl pxq ď

ż

Rd

|x| dµ pxq . (23)

From Exercise 2 of the sheet from the 18.03.2021 (third sheet), this together with the
weak convergence implies that for any function ϕ P C

`

Rd
˘

such that |ϕ pxq| ď C p1` |x|q
we get

lim
lÑ`8

ż

Rd

ϕ pxq dµkl pxq “

ż

Rd

ϕ pxq dµ pxq . (24)

This in particular implies the statement for Lipschitz functions (given that Lip
`

Rd
˘

Ď

C
`

Rd
˘

and |ϕ pxq| ď |ϕ p0q| ` }ϕ}LippRdq |x|).

Similarly as before, from the definition of W1 we now get
ż

Rd

ϕ pxq dµkl pxq ´

ż

Rd

ϕ pxq dµ pxq ď (25)

ďW1

`

µkl , µkl`n

˘

`

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq dµkl`n
pxq ´

ż

Rd

ϕ pxq dµ pxq

ˇ

ˇ

ˇ

ˇ

. (26)

Fix ε ą 0; there exists N P N such that for any l ą N we get W1

`

µkl , µkl`n

˘

ă ε. Given
that we have that the left hand side does not depend on n, we get

ż

Rd

ϕ pxq dµkl pxq ´

ż

Rd

ϕ pxq dµ pxq ď (27)

ď ε` inf
nPN

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq dµkl`n
pxq ´

ż

Rd

ϕ pxq dµ pxq

ˇ

ˇ

ˇ

ˇ

“ ε. (28)
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Given that N does not depend on ϕ this implies W1 pµkl , µq Ñ 0 as lÑ `8.

We finally show that this implies that the full sequence converges. To prove that, consider
by contradiction that there exists a subsequence tµklulPN such that

lim inf
lÑ`8

W1 pµkl , µq “ C ą 0. (29)

We can then construct a sub-subsequence
 

µkln
(

nPN such that W1

`

µkln , µ
˘

Ñ 0 as n Ñ
`8, which gives a contradiction.

Exercise 2

Prove the second part of Dobrushin’s Theorem, i.e., let M “ tµt| t P r0, T su PM
`
T pµ0q a

solution to
"

Btµt pψq “ µt pv ¨∇xψ ` Eµt ¨∇vψq , t P r0, T s , ψ P C8c
`

R3 ˆ R3
˘

,
µt pψq|t“0 “ µ0 pψq , ψ P C8c

`

R3 ˆ R3
˘

,
(30)

with

Eµ pxq “

ż

R3ˆR3

∇U
`

x´ x1
˘

dµ
`

x1, v1
˘

, U P C2
b

`

R3
˘

, (31)

and with µ0 absolutely continuous with respect to L6, i.e. dµ0 px, vq “ f0 px, vq dxdv.
Prove that if f0 P C

1
`

R3 ˆ R3
˘

then also µt is absolutely continuous with respect to L6

and moreover dµt px, vq “ f pt, x, vq dxdv with f P C1
`

r0, T s ˆ R3 ˆ R3
˘

.

Hint: It can be convenient to use the fact that, once the solution exists, the Vlasov equation
can be seen as a Liouville equation with a potential depending on the existing solution.

Proof. To get the result, first notice that the measure µt is solution to the problem
"

Btµt pψq “ µt pb pt, ¨q ¨∇ψq , t P r0, T s , ψ P C8c
`

R3 ˆ R3
˘

,
µt pψq|t“0 “ µ0 pψq , ψ P C8c

`

R3 ˆ R3
˘

,
(32)

with b pt, x, vq “ pv,Eµt pt, xqq. If we then prove that b P C1
`

r0, T s ˆ R6;R6
˘

is bounded
with ∇zb P L

8
`

r0, T s ˆ R6;M6 pRq
˘

, we can then apply Exercise 1 of the sheet from the
18.03.2021 (third sheet) to get the result. This follows easily from the definition of Eµ.

Exercise 3

Let f0 P L
1 X L8

`

R3 ˆ R3
˘

; consider the following initial value problem:

"

Btf ` v ¨∇xf “ 0, in D1
`

r0,`8q ˆ R3 ˆ R3
˘

,
f |t“0 “ f0, in D1

`

R3 ˆ R3
˘

,
(33)

where we also assume as usual that the map t ÞÑ xf pt, ¨, ¨q , ϕy is continous in t for any
ϕ P C8c

`

R3 ˆ R3
˘

.
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(i) Prove that there exists a unique solution to (33) and show its explicit form.

(ii) Use the explicit form to prove that

}f pt, ¨, ¨q}LppR3ˆR3q “ }f0}LppR3ˆR3q , @t P r0,`8q , p P r1,`8s . (34)

(iii) Use the explicit form to prove the following dispersion relation:

}f pt, ¨, ¨q}L8x pR3;L1
vpR3qq ď

1

|t|3
}f0}L1

xpR3;L8v pR3qq , @t P p0,`8q . (35)

Proof. To prove (i), is enough to use the explicit solution. Indeed, we know that for any
T ą 0, t P r´T, T s the function f pt, px, vqq “ f0 pZ p0, t, px, vqqq is a solution to the
problem in r´T, T s, where Z ps, t, px, vqq “ pX ps, t, px, vqq , V ps, t, px, vqqq solves
$

&

%

BsX ps, t, px, vqq “ V ps, t, px, vqq , @ ps, t, x, vq P r´T, T s ˆ r´T, T s ˆ R3 ˆ R3,
BxV ps, t, px, vqq “ 0, @ ps, t, x, vq P r´T, T s ˆ r´T, T s ˆ R3 ˆ R3,
Z pt, t, px, vqq “ px, vq , @ pt, x, vq P r´T, T s ˆ R3 ˆ R3,

(36)

Given that Z ps, t, px, vqq “ px´ tv, vq, it is then easy to prove that f pt, px, vqq “ f0 px´ tv, vq
is the unique solution in r´T, T s, and it can naturally extended to a solution on R. Finally,
uniqueness on R follows from uniqueness on every intervall r´T, T s.

To prove (ii) we have that for any p P r1,`8q

}f pt, ¨, ¨q}LppR3ˆR3q “

ˆ
ż

R3

ż

R3

|f pt, px, vqq|p dxdv

˙
1
p

(37)

“

ˆ
ż

R3

ż

R3

|f0 px´ tv, vq|
p dxdv

˙
1
p

(38)

“

ˆ
ż

R3

ż

R3

|f0 px, vq|
p dxdv

˙
1
p

“ }f0}LppR3ˆR3q . (39)

Similarly, we also get

}f pt, ¨, ¨q}L8pR3ˆR3q “ ess sup
px,vqPRdˆRd

|f pt, px, vqq| “ ess sup
px,vqPRdˆRd

|f0 px´ tv, vq| (40)

“ ess sup
px,vqPRdˆRd

|f0 px, vq| “ }f0}L8pR3ˆR3q . (41)

To prove (iii) we have

}f pt, ¨, ¨q}L8x pR3;L1
vpR3qq “ ess sup

xPRd

ż

Rd

|f pt, px, vqq| dv “ ess sup
xPRd

ż

Rd

|f0 px´ tv, vq| dv (42)

“ ess sup
xPRd

ż

Rd

ˇ

ˇ

ˇ

ˇ

f0

ˆ

x1,
x´ x1

t

˙ˇ

ˇ

ˇ

ˇ

1

|t|3
dx1 (43)

ď
1

|t|3

ż

Rd

ess sup
vPRd

|f0 px, vq| dx “
1

|t|3
}f0}L1

xpR3;L8v pR3qq . (44)

5


