

Kinetic Equations

Solution to the Exercises

– 25.03.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Consider a family of probability measures $F \subseteq \mathcal{P}(\mathbb{R}^d)$. We say that *the family is tight* if for any $\varepsilon > 0$ there exists a compact set $K \subset \mathbb{R}^d$ such that $\mu(K) > 1 - \varepsilon$ for any $\mu \in F$.

The following Theorem holds true (for a proof, see Theorem 5.1 in *Convergence of Probability Measures (Second Edition)* by P. Billingsley).

Theorem (Prohorov's Theorem). *Consider a sequence of probability measures $\{\mu_k\}_{k \in \mathbb{N}} \subseteq \mathcal{P}(\mathbb{R}^d)$ which is tight. Then there exists a subsequence¹ $\{\mu_{k_l}\}_{l \in \mathbb{N}}$ and a probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ such that $\mu_{k_l} \rightharpoonup \mu$ if $l \rightarrow +\infty$.*

Use Prohorov's Theorem (without proving it) to prove that $(\mathcal{P}_1(\mathbb{R}^d), \mathcal{W}_1)$ is a complete metric space.

Hint: Consider a Cauchy sequence for \mathcal{W}_1 , show that it is tight. Using the Theorem deduce the existence of a weak limit and prove that the convergence holds also with the metric \mathcal{W}_1 .

Proof. Let $\{\mu_k\}_{k \in \mathbb{N}} \subseteq \mathcal{P}_1(\mathbb{R}^d)$ be a Cauchy sequence, i.e., for any ε exists $N \in \mathbb{N}$ such that

$$\mathcal{W}_1(\mu_k, \mu_l) < \varepsilon \quad k, l \in \mathbb{N}, k > N, l > N. \quad (1)$$

We first show that $\{\mu_k\}_{k \in \mathbb{N}} \subseteq \mathcal{P}_1(\mathbb{R}^d)$ is tight. Indeed let N such that

$$\mathcal{W}_1(\mu_k, \mu_l) < 1 \quad k, l \in \mathbb{N}, k > N, l > N. \quad (2)$$

As a consequence we get by the definition of Wasserstein distance that if $k > N$

$$\int_{\mathbb{R}^d} |x| d\mu_k(x) = \int_{\mathbb{R}^d} |x| d\mu_k(x) - \int_{\mathbb{R}^d} |x| d\mu_{N+1}(x) + \int_{\mathbb{R}^d} |x| d\mu_{N+1}(x) \quad (3)$$

$$\leq \mathcal{W}_1(\mu_k, \mu_{N+1}) + \int_{\mathbb{R}^d} |x| d\mu_{N+1}(x) \leq 1 + \int_{\mathbb{R}^d} |x| d\mu_{N+1}(x), \quad (4)$$

and therefore we get

$$\sup_{k \in \mathbb{N}} \int_{\mathbb{R}^d} |x| d\mu_k(x) \leq \max \left\{ \max_{1 \leq k \leq N} \int_{\mathbb{R}^d} |x| d\mu_k(x), 1 + \int_{\mathbb{R}^d} |x| d\mu_{N+1}(x) \right\} \quad (5)$$

$$=: C < +\infty. \quad (6)$$

¹Recall that $\{\mu_{k_l}\}_{l \in \mathbb{N}}$ is a subsequence of $\{\mu_k\}_{k \in \mathbb{N}}$ if the sequence $\{k_l\}_{l \in \mathbb{N}}$ is a sequence of natural numbers such that $k_{l+1} > k_l$ for any $l \in \mathbb{N}$.

We then consider $R > 0$ a positive real number and B_R the closed ball centered in the origin of radius R to get

$$\inf_{k \in \mathbb{N}} \int_{B_R} d\mu_k(x) = \inf_{k \in \mathbb{N}} \left(1 - \int_{B_R^c} d\mu_k(x) \right) = 1 - \sup_{k \in \mathbb{N}} \int_{B_R^c} d\mu_k(x) \quad (7)$$

$$\geq 1 - \sup_{k \in \mathbb{N}} \int_{B_R} \frac{|x|}{R} d\mu_k(x) \geq 1 - \frac{C}{R} \quad (8)$$

where in the first inequality we used the fact that outside the ball B_R we have $\frac{|x|}{R} \geq 1$.

So, fix now $\varepsilon > 0$; we then have $\mu_k(B_{\frac{C}{\varepsilon}}) \geq 1 - \varepsilon$ for any $k \in \mathbb{N}$ and given that the closed ball is compact, the sequence is tight.

Now, Prohorov's Theorem ensures us that there exists a subsequence $\{\mu_{k_l}\}_{l \in \mathbb{N}}$ and a probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ such that $\mu_{k_l} \rightarrow \mu$ if $l \rightarrow +\infty$. We first show that this implies that $\mathcal{W}_1(\mu_{k_l}, \mu) \rightarrow 0$ as $l \rightarrow +\infty$.

Recall from Exercise 2 of the sheet from the 18.03.2021 (third sheet) the family of functions $f_\varepsilon \in C_b(\mathbb{R}^d)$, defined such that

$$\chi_{B_R}(x) \leq f_\varepsilon(x) \leq \chi_{B_{R+\varepsilon}}(x). \quad (9)$$

By definition of weak convergence and from the bound in (5) we get that for any $R > 0$

$$\int_{B_R} |x| d\mu(x) \leq \int_{\mathbb{R}^d} |x| f_\varepsilon(x) d\mu(x) = \lim_{l \rightarrow +\infty} \int_{\mathbb{R}^d} |x| f_\varepsilon(x) d\mu_{k_l}(x) \quad (10)$$

$$\leq \limsup_{l \rightarrow +\infty} \int_{\mathbb{R}^d} |x| d\mu_{k_l}(x) \leq C. \quad (11)$$

Taking the supremum over $R > 0$ this implies that $\mu \in \mathcal{P}_1(\mathbb{R}^d)$.

Consider now the following function:

$$g_R(x) := \begin{cases} |x|, & |x| \leq R, \\ 2R - |x|, & R < |x| \leq 2R, \\ 0, & |x| > 2R. \end{cases} \quad (12)$$

This is a Lipschitz function with $|x| \chi_{B_R}(x) \leq g_R(x) \leq |x|$ and $\|g_R\|_{\text{Lip}(\mathbb{R}^d)} \leq 1$, therefore we get that for any $l \in \mathbb{N}$

$$\int_{B_R} |x| d\mu_{k_l}(x) \leq \int_{\mathbb{R}^d} g_R(x) d\mu_{k_l}(x) \quad (13)$$

$$= \int_{\mathbb{R}^d} g_R(x) d\mu_{k_l}(x) - \int_{\mathbb{R}^d} g_R(x) d\mu_{k_n}(x) + \int_{\mathbb{R}^d} g_R(x) d\mu_{k_n}(x) \quad (14)$$

$$\leq \|g_R\|_{\text{Lip}(\mathbb{R}^d)} \mathcal{W}_1(\mu_{k_l}, \mu_{k_n}) + \int_{\mathbb{R}^d} g_R(x) d\mu_{k_n}(x) \quad (15)$$

$$\leq \mathcal{W}_1(\mu_{k_l}, \mu_{k_n}) + \int_{\mathbb{R}^d} g_R(x) d\mu_{k_n}(x). \quad (16)$$

Fix $\varepsilon > 0$; given that $\mu_{n_k} \rightarrow \mu$ as $k \rightarrow +\infty$ there exists N such that for any $n > N$ we get

$$\left| \int_{\mathbb{R}^d} g_R(x) d\mu_{k_n}(x) - \int_{\mathbb{R}^d} g_R(x) d\mu(x) \right| < \frac{\varepsilon}{2}. \quad (17)$$

Therefore, using also (5) we get that for any $n > N$

$$\int_{\mathbb{R}^d} |x| d\mu_{k_l}(x) \leq \int_{B_R} |x| d\mu_{k_l}(x) + \frac{C}{R} \quad (18)$$

$$\leq \mathcal{W}_1(\mu_{k_l}, \mu_{k_n}) + \int_{\mathbb{R}^d} g_R(x) d\mu_{k_n}(x) + \frac{C}{R} \quad (19)$$

$$\leq \mathcal{W}_1(\mu_{k_l}, \mu_{k_n}) + \int_{\mathbb{R}^d} g_R(x) d\mu(x) + \frac{\varepsilon}{2} + \frac{C}{R} \quad (20)$$

$$\leq \mathcal{W}_1(\mu_{k_l}, \mu_{k_n}) + \int_{\mathbb{R}^d} |x| d\mu(x) + \frac{\varepsilon}{2} + \frac{C}{R}. \quad (21)$$

Using the fact that the sequence is Cauchy we also get that there is $N' \geq N$ such that for any $l > N'$ we get

$$\int_{\mathbb{R}^d} |x| d\mu_{k_l}(x) \leq \int_{\mathbb{R}^d} |x| d\mu(x) + \varepsilon + \frac{C}{R}. \quad (22)$$

This implies in particular that

$$\limsup_{l \rightarrow +\infty} \int_{\mathbb{R}^d} |x| d\mu_{k_l}(x) \leq \int_{\mathbb{R}^d} |x| d\mu(x). \quad (23)$$

From Exercise 2 of the sheet from the 18.03.2021 (third sheet), this together with the weak convergence implies that for any function $\varphi \in C(\mathbb{R}^d)$ such that $|\varphi(x)| \leq C(1 + |x|)$ we get

$$\lim_{l \rightarrow +\infty} \int_{\mathbb{R}^d} \varphi(x) d\mu_{k_l}(x) = \int_{\mathbb{R}^d} \varphi(x) d\mu(x). \quad (24)$$

This in particular implies the statement for Lipschitz functions (given that $\text{Lip}(\mathbb{R}^d) \subseteq C(\mathbb{R}^d)$ and $|\varphi(x)| \leq |\varphi(0)| + \|\varphi\|_{\text{Lip}(\mathbb{R}^d)} |x|$).

Similarly as before, from the definition of \mathcal{W}_1 we now get

$$\int_{\mathbb{R}^d} \varphi(x) d\mu_{k_l}(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu(x) \leq \quad (25)$$

$$\leq \mathcal{W}_1(\mu_{k_l}, \mu_{k_{l+n}}) + \left| \int_{\mathbb{R}^d} \varphi(x) d\mu_{k_{l+n}}(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu(x) \right|. \quad (26)$$

Fix $\varepsilon > 0$; there exists $N \in \mathbb{N}$ such that for any $l > N$ we get $\mathcal{W}_1(\mu_{k_l}, \mu_{k_{l+n}}) < \varepsilon$. Given that we have that the left hand side does not depend on n , we get

$$\int_{\mathbb{R}^d} \varphi(x) d\mu_{k_l}(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu(x) \leq \quad (27)$$

$$\leq \varepsilon + \inf_{n \in \mathbb{N}} \left| \int_{\mathbb{R}^d} \varphi(x) d\mu_{k_{l+n}}(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu(x) \right| = \varepsilon. \quad (28)$$

Given that N does not depend on φ this implies $\mathcal{W}_1(\mu_{k_l}, \mu) \rightarrow 0$ as $l \rightarrow +\infty$.

We finally show that this implies that the full sequence converges. To prove that, consider by contradiction that there exists a subsequence $\{\mu_{k_l}\}_{l \in \mathbb{N}}$ such that

$$\liminf_{l \rightarrow +\infty} \mathcal{W}_1(\mu_{k_l}, \mu) = C > 0. \quad (29)$$

We can then construct a sub-subsequence $\{\mu_{k_{l_n}}\}_{n \in \mathbb{N}}$ such that $\mathcal{W}_1(\mu_{k_{l_n}}, \mu) \rightarrow 0$ as $n \rightarrow +\infty$, which gives a contradiction.

□

Exercise 2

Prove the second part of Dobrushin's Theorem, i.e., let $M = \{\mu_t \mid t \in [0, T]\} \in \mathfrak{M}_T^+(\mu_0)$ a solution to

$$\begin{cases} \partial_t \mu_t(\psi) = \mu_t(v \cdot \nabla_x \psi + E_{\mu_t} \cdot \nabla_v \psi), & t \in [0, T], \psi \in C_c^\infty(\mathbb{R}^3 \times \mathbb{R}^3), \\ \mu_t(\psi)|_{t=0} = \mu_0(\psi), & \psi \in C_c^\infty(\mathbb{R}^3 \times \mathbb{R}^3), \end{cases} \quad (30)$$

with

$$E_\mu(x) = \int_{\mathbb{R}^3 \times \mathbb{R}^3} \nabla U(x - x') d\mu(x', v'), \quad U \in C_b^2(\mathbb{R}^3), \quad (31)$$

and with μ_0 absolutely continuous with respect to \mathcal{L}^6 , i.e. $d\mu_0(x, v) = f_0(x, v) dx dv$. Prove that if $f_0 \in C^1(\mathbb{R}^3 \times \mathbb{R}^3)$ then also μ_t is absolutely continuous with respect to \mathcal{L}^6 and moreover $d\mu_t(x, v) = f(t, x, v) dx dv$ with $f \in C^1([0, T] \times \mathbb{R}^3 \times \mathbb{R}^3)$.

Hint: It can be convenient to use the fact that, once the solution exists, the Vlasov equation can be seen as a Liouville equation with a potential depending on the existing solution.

Proof. To get the result, first notice that the measure μ_t is solution to the problem

$$\begin{cases} \partial_t \mu_t(\psi) = \mu_t(b(t, \cdot) \cdot \nabla \psi), & t \in [0, T], \psi \in C_c^\infty(\mathbb{R}^3 \times \mathbb{R}^3), \\ \mu_t(\psi)|_{t=0} = \mu_0(\psi), & \psi \in C_c^\infty(\mathbb{R}^3 \times \mathbb{R}^3), \end{cases} \quad (32)$$

with $b(t, x, v) = (v, E_{\mu_t}(t, x))$. If we then prove that $b \in C^1([0, T] \times \mathbb{R}^6; \mathbb{R}^6)$ is bounded with $\nabla_z b \in L^\infty([0, T] \times \mathbb{R}^6; M_6(\mathbb{R}))$, we can then apply Exercise 1 of the sheet from the 18.03.2021 (third sheet) to get the result. This follows easily from the definition of E_μ .

□

Exercise 3

Let $f_0 \in L^1 \cap L^\infty(\mathbb{R}^3 \times \mathbb{R}^3)$; consider the following initial value problem:

$$\begin{cases} \partial_t f + v \cdot \nabla_x f = 0, & \text{in } \mathcal{D}'([0, +\infty) \times \mathbb{R}^3 \times \mathbb{R}^3), \\ f|_{t=0} = f_0, & \text{in } \mathcal{D}'(\mathbb{R}^3 \times \mathbb{R}^3), \end{cases} \quad (33)$$

where we also assume as usual that the map $t \mapsto \langle f(t, \cdot, \cdot), \varphi \rangle$ is continuous in t for any $\varphi \in C_c^\infty(\mathbb{R}^3 \times \mathbb{R}^3)$.

(i) Prove that there exists a unique solution to (33) and show its explicit form.

(ii) Use the explicit form to prove that

$$\|f(t, \cdot, \cdot)\|_{L^p(\mathbb{R}^3 \times \mathbb{R}^3)} = \|f_0\|_{L^p(\mathbb{R}^3 \times \mathbb{R}^3)}, \quad \forall t \in [0, +\infty), p \in [1, +\infty]. \quad (34)$$

(iii) Use the explicit form to prove the following dispersion relation:

$$\|f(t, \cdot, \cdot)\|_{L_x^\infty(\mathbb{R}^3; L_v^1(\mathbb{R}^3))} \leq \frac{1}{|t|^3} \|f_0\|_{L_x^1(\mathbb{R}^3; L_v^\infty(\mathbb{R}^3))}, \quad \forall t \in (0, +\infty). \quad (35)$$

Proof. To prove (i), is enough to use the explicit solution. Indeed, we know that for any $T > 0$, $t \in [-T, T]$ the function $f(t, (x, v)) = f_0(Z(0, t, (x, v)))$ is a solution to the problem in $[-T, T]$, where $Z(s, t, (x, v)) = (X(s, t, (x, v)), V(s, t, (x, v)))$ solves

$$\begin{cases} \partial_s X(s, t, (x, v)) = V(s, t, (x, v)), & \forall (s, t, x, v) \in [-T, T] \times [-T, T] \times \mathbb{R}^3 \times \mathbb{R}^3, \\ \partial_x V(s, t, (x, v)) = 0, & \forall (s, t, x, v) \in [-T, T] \times [-T, T] \times \mathbb{R}^3 \times \mathbb{R}^3, \\ Z(t, t, (x, v)) = (x, v), & \forall (t, x, v) \in [-T, T] \times \mathbb{R}^3 \times \mathbb{R}^3, \end{cases} \quad (36)$$

Given that $Z(s, t, (x, v)) = (x - tv, v)$, it is then easy to prove that $f(t, (x, v)) = f_0(x - tv, v)$ is the unique solution in $[-T, T]$, and it can naturally extended to a solution on \mathbb{R} . Finally, uniqueness on \mathbb{R} follows from uniqueness on every intervall $[-T, T]$.

To prove (ii) we have that for any $p \in [1, +\infty)$

$$\|f(t, \cdot, \cdot)\|_{L^p(\mathbb{R}^3 \times \mathbb{R}^3)} = \left(\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} |f(t, (x, v))|^p dx dv \right)^{\frac{1}{p}} \quad (37)$$

$$= \left(\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} |f_0(x - tv, v)|^p dx dv \right)^{\frac{1}{p}} \quad (38)$$

$$= \left(\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} |f_0(x, v)|^p dx dv \right)^{\frac{1}{p}} = \|f_0\|_{L^p(\mathbb{R}^3 \times \mathbb{R}^3)}. \quad (39)$$

Similarly, we also get

$$\|f(t, \cdot, \cdot)\|_{L^\infty(\mathbb{R}^3 \times \mathbb{R}^3)} = \operatorname{ess\,sup}_{(x, v) \in \mathbb{R}^d \times \mathbb{R}^d} |f(t, (x, v))| = \operatorname{ess\,sup}_{(x, v) \in \mathbb{R}^d \times \mathbb{R}^d} |f_0(x - tv, v)| \quad (40)$$

$$= \operatorname{ess\,sup}_{(x, v) \in \mathbb{R}^d \times \mathbb{R}^d} |f_0(x, v)| = \|f_0\|_{L^\infty(\mathbb{R}^3 \times \mathbb{R}^3)}. \quad (41)$$

To prove (iii) we have

$$\|f(t, \cdot, \cdot)\|_{L_x^\infty(\mathbb{R}^3; L_v^1(\mathbb{R}^3))} = \operatorname{ess\,sup}_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} |f(t, (x, v))| dv = \operatorname{ess\,sup}_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} |f_0(x - tv, v)| dv \quad (42)$$

$$= \operatorname{ess\,sup}_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} \left| f_0 \left(x', \frac{x - x'}{t} \right) \right| \frac{1}{|t|^3} dx' \quad (43)$$

$$\leq \frac{1}{|t|^3} \int_{\mathbb{R}^d} \operatorname{ess\,sup}_{v \in \mathbb{R}^d} |f_0(x, v)| dx = \frac{1}{|t|^3} \|f_0\|_{L_x^1(\mathbb{R}^3; L_v^\infty(\mathbb{R}^3))}. \quad (44)$$

□