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Exercise 1

Consider a family of probability measures F' < P (Rd). We say that the family is tight if
for any € > 0 there exists a compact set K < R? such that p (K) > 1 — ¢ for any p e F.

The following Theorem holds true (for a proof, see Theorem 5.1 in Convergence of Prob-
ability Measures (Second Edition) by P. Billingsley).

Theorem (Prohorov’s Theorem). Consider a sequence of probability measures {pi} oy <
P (]Rd) which is tight. Then there exists a subsequence® {1k, } 1y and a probability measure
uweP (]Rd) such that pg, — p if | — +o0.

Use Prohorov’s Theorem (without proving it) to prove that (771 (Rd) ,Wl) is a complete
metric space.

Hint: Consider a Cauchy sequence for Wy, show that it is tight. Using the Theorem deduce
the existence of a weak limit and prove that the convergence holds also with the metric
Wi.

Proof. Let {fik}reny S P1 (Rd) be a Cauchy sequence, i.e., for any ¢ exists N € N such
that

Wi (g, ) < € k,1eN, k>N, 1> N. (1)

We first show that {u},cy € P1 (R?) is tight. Indeed let N such that

Wh (pg, ) < 1 k,leN, k>N, > N. (2)

As a consequence we get by the definition of Wasserstein distance that if £k > N
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and therefore we get

supf || dpg (x) < max{ max f |z| dpg (z) , 1 —I—J || dpn 41 (:n)} (5)
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'Recall that {/i, },.y is a subsequence of {ix }, cy if the sequence {ki},.y is a sequence of natural numbers
such that k;+1 > k; for any [ € N.



We then consider R > 0 a positive real number and Bp the closed ball centered in the
origin of radius R to get

inf f dpg () = inf | 1 — J dug (z) | =1— supf dp (x) (7)
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where in the first inequality we used the fact that outside the ball Bg we have % > 1.

So, fix now € > 0; we then have pg (Bg) > 1 —¢ for any k£ € N and given that the closed
ball is compact, the sequence is tight.

Now, Prohorov’s Theorem ensures us that there exists a subsequence {uy,}, and a
probability measure u € P (]Rd) such that pp, — p if | — +oo. We first show that this
implies that Wi (pg,, 1) — 0 as I — 400,

Recall from Exercise 2 of the sheet from the 18.03.2021 (third sheet) the family of functions
feeCy (Rd), defined such that

XBy (7) < fo (2) < XBg,. (). (9)

By definition of weak convergence and from the bound in (5) we get that for any R > 0

|, )< | g @ dne) = tim [ e s @i @) 0
< limsupf || dpg, (x) < C. (11)
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Taking the supremum over R > 0 this implies that pu € P; (Rd).

Consider now the following function:

|z, 2 < R
gr(z) =% 2R—|z|, R <|z|<2R, (12)
0, |z| > 2R.

This is a Lipschitz function with |z| x s, () < gr (z) < [z] and [gr|;,gae) < 1, therefore
we get that for any [ e N

f 2] dur, () < f or () duy (@) (13)
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Fix € > 0; given that p,, — p as k — +00 there exists N such that for any n > N we get

5
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Therefore, using also (5) we get that for any n > N
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Using the fact that the sequence is Cauchy we also get that there is N’ > N such that
for any [ > N’ we get

[ teldin @) < [ lelduta) 42+ 3 (22)

This implies in particular that

lim supf || dpg, (x) < f |z| dp () . (23)
Rd R4
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From Exercise 2 of the sheet from the 18.03.2021 (third sheet), this together with the
weak convergence implies that for any function ¢ € C' (R?) such that |¢ (z)| < C (1 + |z|)
we get

i [ (@) din, @)= [ ¢ @)du(). (24)

>+ JRd R
This in particular implies the statement for Lipschitz functions (given that Lip (Rd) c
C (R) and |¢ (2)] < | (0)] + o] ipgay |2])-

Similarly as before, from the definition of W, we now get

f o () dug, (z) — f o (2) du (z) < (25)
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W ) + [ @i, @)= [ oo dna)

Fix & > 0; there exists N € N such that for any [ > N we get W, (,ukl,,uan) < e. Given
that we have that the left hand side does not depend on n, we get

| o@du @)= [ owduts) < (27)
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Given that N does not depend on ¢ this implies Wy (pu,, ) — 0 as | — +0c0.

We finally show that this implies that the full sequence converges. To prove that, consider
by contradiction that there exists a subsequence {pi, },.y such that

lim inf Wy (pg,, n) = C > 0. (29)
l—+00

We can then construct a sub-subsequence { Pk, }neN such that W; (Mkzn , u) —0asn—
+00, which gives a contradiction.
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Exercise 2

Prove the second part of Dobrushin’s Theorem, i.e., let M = {y,| t € [0,T]} € M. (o) a
solution to

{ Orpe (V) = e (v- Voo + By, - Vo), t€[0,T], v e CL (R? x R?), (30)
pe (V) |i—g = 1o (¥) ¥ e CP (R® x R?),
with
E,(z) = J VU (z —2') dp (2/,0), UeC} (RS) , (31)
R3xR3

and with g absolutely continuous with respect to L°, i.e. dug (x,v) = fo(x,v)dzdv.
Prove that if fy e C! (R3 X R?’) then also s is absolutely continuous with respect to £°
and moreover dyy (z,v) = f (t,z,v) dzdv with f e C* ([0,T] x R x R3).

Hint: It can be convenient to use the fact that, once the solution exists, the Vlasov equation
can be seen as a Liouville equation with a potential depending on the existing solution.

Proof. To get the result, first notice that the measure py is solution to the problem

{ at:ut (¢) = Ht (b (t7 ) ’ Vﬂ)) , L€ [OaT] s Ye C((:)O (RS X Rg) ) (32)
pe (V) = 1o (¥) Y eCF (RP xRY),

with b (t,z,v) = (v, E,, (t,x)). If we then prove that b € C* ([O,T] X Rﬁ;Rﬁ) is bounded
with V.b e L® ([0,T] x R% Mg (R)), we can then apply Exercise 1 of the sheet from the
18.03.2021 (third sheet) to get the result. This follows easily from the definition of E,,.

O
Exercise 3
Let foe L' n L™ (]R3 X RS); consider the following initial value problem:
Orf +v-Vaf =0, inD ([0,4%) x R? x R?), (33)
flizo = fo, in D’ (R® x R?),

where we also assume as usual that the map ¢ — {(f (¢,-,), ) is continous in ¢ for any
e CP (R® x R3).



(i) Prove that there exists a unique solution to (33) and show its explicit form.

(ii) Use the explicit form to prove that
1F (g = olngogny s VEe[0,420), pell+o]. (34

(iii) Use the explicit form to prove the following dispersion relation:

1
17 (5 ) pon (m3; 1 m3y) < P 1foll L1 (s, Lo (3 vt € (0, +0). (35)

Proof. To prove (i), is enough to use the explicit solution. Indeed, we know that for any
T > 0,t e [-T,T] the function f(¢,(x,v)) = fo(Z(0,t,(x,v))) is a solution to the
problem in [T, T], where Z (s,t, (z,v)) = (X (s,t, (z,v)),V (s,t, (x,v))) solves

X (s,t, (z,0)) =V (s,t, (z,v)), V(s,t,z,v)e[-T,T] x [-T,T] x R® x R3,
V (s,t, (z,v)) =0, Y (s,t,z,v) e [-T,T] x [-T,T] x R? x R3, (36)
Z (t,t,(z,v)) = (z,v), Y (t,z,v) € [T, T] x R3 x R3,

Given that Z (s, t, (z,v)) = (z — tv,v), it is then easy to prove that f (¢, (z,v)) = fo (z — tv,v)

is the unique solution in [T, T'], and it can naturally extended to a solution on R. Finally,
uniqueness on R follows from uniqueness on every intervall [T, T].

To prove (ii) we have that for any p € [1,4+0)

17 ¢ Mgy = ([ [ 18 0o oo’ (31)
_ ( fRa fm o (@ —w,v)mxdv)’l’ (38)

- (Jw fRiﬂ o (@ )F dxdv) - [ foll Lo s xs) - (39)

Similarly, we also get

Hf (t7 ) ')HLOO(R3><R3) = €SS sup ’f (tv (l’,’U))| = €8s Sup ’fO (‘T - t’U,’U)’ (40)
(z,v)eRIx R4 (z,v)eRIx R4
= esssup |fo(@,v)| = || fol Lo (m3xr3) - (41)

(z,v)eRIx R4

To prove (iii) we have

Hf( ) 7')HL°C (R3;LL(R3)) — = €SS sup JIRd |f (ta (:va))| dv = ess sup fRd |f0 (ﬂj‘ - tv,v)| dv (42)

zeRd zeRd
/
— 1
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zeRd  JRd t |t]
1 J 1
< — ess sup | fo (z,v)|dx = — || fo Jeo . 44
P Jpa S50 | fo (z,0)] M | foll 1 (m3; 10 (m3Y) (44)

O



